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The behavior of active muscular tissue is described with the help of a closed 

system of equations of motion of a two-phase,multicomponent. anisotropic con- 
tinuous medium, with the mechanochemical processes occurring within it taken 

into account. The fundamental hypotheses are based on the information of gene- 
ral character concerning the structure and performance of the muscular tissue. 

It is assumed that the phase in which the mechanochemical reactions take place 
is viscoelastic, while the other phase is assumed elastic. The medium is assumed 
to have single velocity, although a passage of components between the phases is 

allowed. The laws of conservation are given and the rheological equations are 
written in accordance with the general principles of the mechanics of continu- 
ous medium and thermodynamics of irreversible processes [ 1 - 41. It is shown 
that the model constructed describes, e. g., such characteristic properties of the 

muscle tissue as the existence of stresses in the absence of strains, zero-load de- 
formations, and dissipation of energy in the state of mechanical equilibrium. 

The activity of the muscular tissue is governed by chemical processes taking 
place in the tissue, within the specific ordered structures called myofibrillae 
and, in the final count, by the mechanochemical reactions which affect the form 
or the relative distribution of the protein molecules [5 - 81. Outside the myo- 
fibrillae we have various auxilliary systems, the connecting tissue and other 
structures, including capillary blood vessels which serve as the source of initial 
chemical compounds. The onset of active muscular contraction is connected 
with the arrival of specific reagents at the myofibrillae. 

The study of various physiological phenomena (such as the working of the 
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heart, propagation of an excitation in the tissues, organization of movements, 
regulation of the blood circulation and breathing) requires, on the one hand, a 
rheological equation of the active muscle to be available, on the other hand it 

requires the knowledge of the relation connecting the basic mechanical para- 

meters of the muscle (such as length, load, etc. ) with the parameters defined by 
the chemical processes,such as the energy needed by the muscle during contrac- 
tion. The absence of a sufficiently general model of the muscle makes neces- 

sary the use, at the present time, of much simpler models [9 - 111. 
The following problems are usually considered in the literature on their own : 

the propagation of excitation throughout the muscle tissue, mechanics of the 

muscle as a whole in terms of the load - length, the energetics and biochemistry 

of the muscular activity. 
All existing models of the muscular tissue are, with the exception of one given 

in [12], one-dimensional and are given, as a rule, in the form of relations con- 
necting the load and extension and their derivatives with respect to time, with 
certain additional parameters which have the dimensions of the load or exten- 
sion. These additional parameters have no explicit connection with the chemi- 

cal or other internal processes taking place within the muscle, and their varia- 
tion with respect to time is defined a priori , differently for the muscle in 

the active and in the passive state [12 - 181. Thus the author of [12] proposes 
a rheological equation of the form 

(0.1) 

where ptjd is the deviator of the stress tensor, aij is the strain tensor and Nij’ 
is a tensor parameter (“biofactor”) characterizing the activity of the tissue ; 

N..’ = 0 and Nij’ # 0 for the passive and the active state, respectively. The 13 
so-called three-element models (see e. g. [19]) contain practically the same 
additional parameters. 

Another group of one-dimensional models explains the meaning of the addi- 
tional parameters contained in the rheological equation using the terms and 

quantities chatacterizing the microstructure of the muscle and its hypothetic 
“internal” mechanics (see e. g. Cl6 - 18, 20, 211). We have already noted that 
these models are also based on the assumption that active deformations(contrac- 

tions), i.e. zero-stress deformations, are possible. 
The purpose of this paper is to construct a model of a continuous medium 

with properties typical of a muscular tissue, without assumptions of existence 

of active deformations and without using the discussion concerning the micro- 
structure of the myofibrillae and the processes taking place within them. 

1, BII~C equations. The initial assertions are as follows [5 - 71. 
1’. A muscle performs work by means of direct transformation of energy liberated 

during the mechanochemical processes. 

2O. The mechanochemical reactions take place within a large number of small 
finite regions distributed throughout the whole volume of the muscle. 

3O. The sources of the initial chemical reagents are also distributed throughout 
the whole volume of the muscle. 

4O. The muscle tissue is anisotropic and possesses elastic and viscous properties. 
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The viscous properties depend mainly on the myofibrillae while the elastic properties 
are governed by the connecting tissue and other structures. 

In accordance with the above we shall consider a two-phase continuous medium, each 
phase containing n components. Phase 1 consists of the myofibrillae, and phase 2 of all 

the remaining structures. The phases, in principle, differ from each other by the fact 
that mechanochemical reactions can only take place in one of them (in phase 2). The 
elementary volume v of the continuo~ medium is equal to the sum of the volumes vf 
and u* occupied by the first and second phase,respectively, The phases interface is 
assumed to be permeable for certain components. 

The construction of equations for a two-phase medium involves averaging various 
quantities over the area and over the volume. This gives rise to additional parameters, 
namely the porosity m = ~1 / u ahd permeability (relative area of cross section per- 
taining to phase 1). In the present work we assume that the medium is statistically ho- 

mogeneo~, hence ~rmeabili~ is equ$ to porosity. The equations are written for the 
averaged parameters. The parameters obtained by averaging over the volume of one of 
the phases (ul or us) are contained within the angular brackets, while the symbols with- 
out the brackets denote the parameters obtained by averaging over the total elementary 
volume u. The upper indices denote the phase and the lower (nontensorial) indices 

denote either the given component or the given reaction, 
Let us define the density of the h th component in the i th phase by 

Qri ==m,‘fv 

where mki is the mass of the Jrth component in the ith phase contained in the elemen- 
tary volume U, and let us use this to define the mass concentration 

where p is the mean density of the mixture, We assume that the density p of the me- 
dium and the true phase densities (pi> averaged over the respective phases (true den- 

sities) are constant-and equal to each other 

p = (p’>=(p2) = const ((P’) = $$) (I.21 

Defining the quantities (pi) (appearing within the brackets in (1.2)) in the following 

manner : 
W) = P z: g 

k=l 

we can show that the equation p = (p”} is equivalent to the relation 
It 

k=l 

Unlike the concentrations given in (1.1) the true concentrations (cki) are defined by 
the formula (no summation is performed over i ) 

By virtue of (1.3), the concentrations cki and (cki> are connected by 

Ck l = m(ckl), ck2 = (1 - m) (ck2) 
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Clearly, the sum of all concentrations c Ri is equal to unity. Here the substances, con- 
centration of which is purposely retained constant, are not grouped separately, but this 

can easily be performed in the final equations. 
The concentration changes in the phases can be caused by the influx of matter, the 

chemical reactions, and diffusion within the phases. For simplicity we shall assume fur- 

ther that the chemical reactions may take place only in the phase 2. Since the veloci- 
ties of the components coincide, therefore diffusion which is governed by the difference 
between the component velocities and the average velocity of the medium, does not 

appear within the phases. 
Taking the above into account we can write the equations of conservation of mass of 

the components in the form 
dckI 

P,,= Q&l, JG = 1,2,. f . , n 

Pd$ = Q&’ f- i v&jJj, k=l,2,..., n 
j=l 

where Qki is the velocity of influx of the k th species into the phase i, v kjJj is the 
rate of formation of the k th component in the jth chemical reaction and r is the num- 

ber of reactions. The quantity vki is related to the molecular mass M, of the k th 
component and is proportional to the stoichiometric coefficient accompanying the com- 
ponent k entering the equation of the j th chemical reaction. The coefficients Y kj are 

assumed positive when the component k appears in the right-hand side of the equation 
of reaction (the substance is generated due to reaction) and negative, when it enters the 
left-hand side of the equation. Since the mass is conserved in each reaction, we have 

n 

2 vkj z 0, i =I I, 2, _ . , r 
k=l 

We further assume that the matter can enter phase 1 only from phase 2 or from the dis- 

~ibuted’~external~‘so~ces, and phase 2 only from phase 1. For this reason we have 

Qkl = - Qk + QL Qk2 = Q/z (1.5) 
where eke is the source strength in phase 1 (a prescribed quantity), The condition of 
incompressibility implies that Q1” + . . . + Qne = 0. 

We note that by virtue of the assumption that the component velocities coincide, the 
derivatives & / dt in (1.4) have the same meaning for all & and for both phases. As- 
suming that the medium velocity is small, we shall neglect the convective transport of 

matter. Then Eqs. (1.4) with (1.5) taken into account, can be written in the form 

(1.6) 

Let us write the equations of continuity (with the constancy of density taken into 
account) and of conservation of momentum for the medium on the whole (the deforma- 
tions are assumed small) divu = 0 (i-7) 

a%$ 

‘at2= aXj 
apij + pfi (~-8) 

Here ui is the displacement vector, fi are the mass forces and pij is the stress tensor 
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for the whole medium. A fixed, orthonormal coordinate system is used in (1. 8) and the 
subsequent equations. 

For each of the phases and for the whole medium we introduce free energy, entropy, 
temperature, the stress and strain tensors. Further we assume that the temperatures and 
strains in both phases coincide and that the following relations hold : 

s = m (9) + (1 - m) (9) 

F = m (Fl) + (1 - m) (F2) 

Pi j = m($)ij + (1 - m) (p2>ij 

(1.9) 

where s, F and T denote the entropy, free energy and temperature,respectively, for 
the medium on the whole. 

Following assumptions are made with regard to the rheological properties of the phases, 
in accordance with the assertion 4”. Phase 1 is elastic and phase 2 is viscoelastic. For 
this reason it is expedient to write the strain tensor for the phase 2 in the form ot a sum 

&ii = qij f Aijv where vii is the reversible part of the total strain. In accordance 
with the accepted meaning of the concepts of elasticity and viscoelasticity we define 
for each of the phases the free energy, and postulate the Gibbs relation 

d ( F1) = $ (p’)&Eij - (S’) dT f i (/ok’) d (c;<~) 
k=rl 

(1.11) 

(1 - m) (F2> = Fo2 (ck2, T) + & mijlrnYijVlrn (l.12) 

d (F2> = s (P2)&qij - (s2) dT f fJ (pk2) d (Ck2) 
k=l 

(1.13) 

(pki) = a (P) /a +ki), (2) = a (F’) / aT 

Here (pki) denotes the chemical potential of the kth component of the i th phase. 

The strains and displacements are assumed small, consequently we have (with the incom- 
pressibility of the medium taken into account) 

&ii = 0, qii = Aii = 0 (1.14) 

Taking into account the presence of the mass somces in phase 1 and the definitions 
(1.9) - (1.14). we can write the equation of the heat influx as well as the expression 
for the second law of thermodynamics, in the form 

dF = $ pijdeij- sdT - dq’ + ’ ~ aF p h‘ =1 ac,l Qkedt (1.15) 

Tds == df -I- dq’ + i TS^.’ y dt 
h-=1 

8s 

(1.16) 
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Here the expression for partial entropy Sk1 was derived employing the assumptions 
made earlier about the free energy. 

2, Rheologlcrl rellitionn, The system (1.6) - (1.10) is not closed. It con- 
tains the following unknown quantities Qk, Ji and pij, for which we require defining 
equations. 

The formulas (1.10) and (1.12) for the free energy of the phases and the Gibbs equa- 
tions (1.11) and (1.13) directly yield expressions for the deviators of the stress tensors 
in the phases 1 and 2 

o$ = kijrmelrn, cij’ = mijlnl%m (2.1) 

$ja = Ca ((P”hj - ‘13 (P”)r@ij) (2.2) 

(c’ =! m, c2 = (1 - m), a = 1, 2) 

Taking into account the identities 

dc” (F”) / a$ = (plrU)+ (F") - 5 (pxCla:7 a=1,2 

I=1 

and introducing the chemical potentials of the phases 1 and 2 related to the unit mass 
of the whole medium 

pk” = 

3ca (Fa> 
ac a ’ 

ct= I,2 

k 

We transform the Gibbs equations (1.13) and (1.15) to the form 

d (c~(F’>) = ; c* (pi)ijdeij - c1 (sI> dT + i 
k=l 

d(C2(F2)) = ~c2(p2)+jd~~ij-C2(S2)dT + 5 
k=l 

(2.3) 

We use the relation pdq ce) = - div q dt to define the heat flux vector q . Then 

(1.15) and (1.16) with (2.3) taken into account we obtain the following equation of the 
entropy balance : ds p dt - -$$ Qre = - div % + $ (2.4) 

R = - % grad T + Oij2Llij’ + i Qk (pkl - pk2) - i JjAj (2.5) 
P=l j=1 

77 

Aj = 2 v+k2, j=1,2,...r (2.6) 
k=l 

Here R is a dissipative function and the quantity A j denotes, by definition, the affi- 
nity of the jth chemical reaction. 

We shall assume that the generalized fluxes g, oij2, Qk and Jj can be expressed 
in a linear manner, in terms of the generalized thermodynamic forces 

1 Aij’ j.Lk’ -- pk” Ai -_ 3.2 grad T, -1’, --_ l’ ’ il’ 

By virtue of the assertion 4” of Sect. 1 referring to the anisotropy of the medium, the 
coefficients appearing in the above relations as well as the coefficients kijlm and 
miilm in (2.1) are determined by the metric tensor gij and the. tensors characterizing 
the symmetry of the medium, and the Curie principle does not hold in the general case. 
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We now assume that transversal isotropy exists for the medium under consideration 
and that the following symmetry transformations are allowed: one (rotational) axis of 

infinite order, an infinite number of transverse axes of second order (180” rotations), an 
infinite number of longitudinal symmetry planes, one transverse symmetry plane and a 

center of symmetry. It was shown in [2] that this symmetry group, denoted by m .oo: m, 
is characterized by the metric tensor gi j and one additional tensor bij. In the ortonor- 

malized coordinate system in which the basis vector es is directed along the rotational 
axis of infinite order, all components of the tensor bij except b,, = 1 are equal zero. 

The general expression for arbitrary tensor functions B = B (g, b) depending only on 
the above two arguments, is [Z] 

Bi = 0, Bij = BlSi, + fiebijy Bijk = 0 (2.7) 

The fourth rank tensor Bij,,, is characterized, generally speaking, by ten independent 

parameters. We shall write an expression for this tensor with additional conditions of 
symmetry taken into account. Taking into consideration the relations (2.7) we shall 

write, in the general form, the allowed linear relationships connecting the generalized 
fluxes and generalized forces 

The factor containing temperature is included in the appropriate coefficients. In the 

above equations kbY, rsz, rap and nax are scalars; ail, J,bij, h8ij, Saij and S,ij 
are second rank tensors and flijkl is a fourth rank tensor (for clarity, here and in the 

following, the nontensorial indices are denoted by Greek letters). 
The Onsager relations impose the following restrictions on the coefficients : 

haij Tz - hpij, S,ij TV - S,ij 

r,p = q3,, kpj = kjp, nxx = n,,, 0ij E Uji, 
Pijh.i = rjkiij 

The tensor coefficients entering (2.1) and the expression for oi ja in (2.8) must satisfy 
additional relations emerging from the requirement that the stress tensors be symmetric 
and from the fact that Oij’ and oij2 are, by definition. deviators. 

For the fourth rank tensors Bijkl (i.e. for kijl,, mij ki and pij&) the following 

relations must hold 
Biji;t = Bjihl, &xl = Bklijr Bii,;l _- 0 (2.9) 

The general expression for the fourth rank tensor B = B (g, b) satisfying the conditions 
(2.9) under the transversal isotropy, has the form 

Bijkr = ht (6,,6j, + Gil6jh.B 2/s 6&k,) + h2 (h&l;! $- fik,bij - t/$ijSkl - 3bijb,,) + 
ha (6ikbj, +- 6jkbil -t 8ilbjk + 6j,bi, - 4bijb,,) 
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The second rank tensors Ap ij and Snij must be symmetric and have a zero trace. 

Therefore from (2.7) follows : 

h,r3il = hp (Sij - 3hj), s,ii = ~a ($j - 3bij) 

(u = 1,2, . ., n; p =-= 1, 2, . . ., r) 

The defining relations (2.1) and (2.8) contain, apart from two thermal conductivity 
coefficients, 9 + n + 2nr + 1/2 (n2 + r2 f n f r) independent scalar quantities 

(including nr - r stoichiometric coefficients). 
In a specific case when the mass transfer between the phases is determined by the 

chemical potentials only and does not depend on A ij and A, (at the same time the 
reaction rates and the stresses in phase 2 do not depend explicitly on the chemical poten- 

tials of phase l), we must set Szij = 0 and r,ij = 0, whereupon Eqs. (2.8) become 

Jp = hp!jAij’ - 2 kb,A, 
YC.1 

(2.11) 

After this simplification the number of the scalar parameters given above is reduced to 

9 + nr + V2 (n” + r2 +- n + r). The condition of positive definiteness of the dis- 
sipative function R imposes restrictions on the parameters in the defining equations. 

In particular, we have 
nna > 0, n11+2 - n122 > 0 

The rheological equation connecting the deviator pi;! = oijl 
stress tensor with the total strain eii is obtained by eliminating 

accordance with the formula which follows from (2.1) 

Aij = eij - nlY<lif (ptl - kklnrne?im) 

+ oij’ of the total 

Aij” from (2.10) in 

(2.13) 

Here mklij ’ is the inverse of mijh!, i.e. nZ,;,ij’ mijprl = 6,,6,,. Performing the 

computations with (1.11) and (2.13) taken into account we find 

Aij~~p/;~‘d + pij’ = kijkl,‘/,q -t Dijk1Fh.l’ f IVij (2.14) 

Aijh./ = PijvLnlmLlnm 

Using (2.13) to eliminate Aii.from (2. ll), we obtain 

(2.15) 
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We note that the formulas (2.14) and (2.15) are written under the simplifying assump- 
tion that all coefficients in the defining equations are constant. 

Thus, the system describing motion of the continuous medium under consideration, 
possessing mechanochemical reactions, contains the following equations : (1) equation 

of contin~ty (1.7) ; (2) equation of conservation of momentum (I. 8) with the rheologi- 
cal equation (2.14) ; (3) equation of conservation of mass of the components (1.6) toge- 

ther with the defining equations (2.12) and (2.15) ; (4) equation of heat influx. The last 
equation is obtained from (2.4) by inserting into it s = - dF / 8T and the explicit 

expressions for R and y. When the coefficients in the defining equations are constant, 

this equation becomes 

We close the system by specifying the free energy of the medium on the whole and 
the coefficients in the defining equations. 

3, Dircusslon of results. The model constructed has a number of properties 
characteristic for the muscular tissue (see [5 - 81). Thus, from Eqs. (2.14) it follows 
that in absence of strains in the medium, the active stresses governed by the chemical 
reactions in phase 2, may exist and, conversely, the medium may undergo active defor- 
mation in the absence of stresses. Relations (2.8) show that the mechanical processes 
may exert a reciprocal influence on the course of the chemical reaction and on the 
transfer of the chemical components between the phases. We note that the amount of 
energy consumed during contraction depends on the character of the mechanical proces- 

ses taking place within the medium, In particular, energy may be consumed and heat 
released even when the state of mechanical equilibrium prevails and no mechanical 

work is being done. 
The commencement of the process of development of active stresses and strains and 

the beginning of contraction in the muscular tissue is governed by a shift in the che- 

mical equilibrium which may be caused, e. g. by the change in the interphase perme- 
ability coefficients nsX in (2.12). This formula also admits the existence of SO called 

active transfer (from the phase with lower inundation to the phase with higher con- 
centration) of certain reagents, while other reagents diffusing in the “normal” manner 
play the part of chemically active carriers, 

One-dimensional models of the muscle known at present [13, 14, 16 - 191 are based 



Continual mechanochemical model of muscular tissue 437 

on an empirical relation (Hill’s equation) connecting the velocity of contraction of the 
“shortening element” with the stress developed by it. In our model Eq. (2.10) serves as 
an analogofsucha relation; the velocity of contraction corresponds to the quantity Aas 

and the stress developed in it to the quantity o33 2. Since the second term in the right- 

hand side of (2.10) may indirectly depend on the character of the contraction process 

(e. g. on whether the contraction takes place at a constant strain or a constant stress), 
the above relation will be different for the different processes. 

At present it is assumed proved that the contraction of muscular tissue is accompanied 
by splitting of one of the acids (adenosinetriphosphoric acid) and the free energy released 
during this process is estimated to be the basic source of energy for the contraction 

[5 - 71. The model which we have constructed, conforms to this assertion. Indeed, from 
(1.3) - (1.15) it follows that any irreversible processes in an isolated volume of the 
medium, and this also includes the processes during which mechanical work is done, 

take place at the expense of the free energy as a result of chemical processes. For the 
well known models of contractile tissue which do not directly utilize the concept of 

chemical reactions, the free energy in the equation for the heat influx 

dF = $ pij deij - s dT - dq’ + dq** (3.1) 

is specified as a function of the strain tensor and temperature (as before), as well as of 
certain “internal strain” tensor xij (characterizing the internal degrees of freedom 

[4]). Moreover, in (3.1) the influx of external nonmechanical energy dq** is also given. 
Let us now define F and dq** so as to arrive at the rheological equation (0.1) for 

a bioelastic body [12] and let us establish the connection between dq** and the change 
in free energy caused by the chemical processes for the model given in Sects. 1 and 2, 
for &jkl = 0 (when bijkl = 0, neither the rheological equation (2.4) nor (0.1) contain 
derivatives with respect to time). 

Let us expand the free energy into a series in parameters Eij and xii, retaining the 
linear and quadratic terms only and assuming that the coefficients of expansion are 

independent of temperature. The medium is assumed incompressible. By definition the 
bioelastic body is in a passive state if dq** = dq’ = 0. Then from (3.1) we obtain the 

rheological equation of the conventional linear theory of elasticity 

Eij = fij (%lm) = n’ijlmxlm + cij 

Pijd = f’ijkl&kl + BijklXkl = kij/pclp 

We assume that the contraction is governed by an influx of a nonmechanical energy 
dq** # 0, such, that 

dq** = dq’ _t Qij dxij 

Then from (3.1) we can obtain an expression for Q,~ and the following rheological 
equation for a bioelastic body in an active state : 

Pijd = 'ij[mElm + laijkl C&k! - f,,) (3.2) 

which coincides with (0.1) within the accuracy of the notation used. Clearly, there is 
a correspondence between the rheological equation (3.2) and the rheological equation 
(2.14) or (2.10). provided that 

Pijhl = O (3.3) 

The expression for the energy influx dq** with (3.2) and the expression for ~~~ both 
taken into account, assumes the form 
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dq** = clq’ - p%ijkl (Eij - fij) = dq’ - P-l (Pijd - k+jlmelJ dfij (3.4) 

Then the change in the free energy for the model of the medium constructed in Sects. 
1 and 2 resulting from the chemical reactions (&kr = 0) is 

Equating (3.4) and (3.5) with (3.2), (3.3) and (2.1) taken into account, we obtain 
12 

4 ** = - =( _?_ 
k=l 

ac,1 
dck' + -!i!!_ 

8Ck2 
Qke = 0 

Thus, clq**is equal to the change in free energy due to chemical reactions taken with 

the opposite sign. 
The author thanks S, A, Regirer, G. A. Liubimov , A.S. Popel’ and L. V. Nikitin for help, 

useful advice and discussion. 
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The present paper deals with the spatial distribution of the electrostatic poten- 

tial in a channel with two electrodes in the presence of the Hall effect. The 
velocity profile is inhomogeneous and corresponds to the velocity diminishing 
down to zero at the channel walls, The problem of determining the electric 
field in the channel is reduced to that of solving a boundary value problem with 

mixed boundary conditions for an elliptic type equation. One of the versions of 
the Wiener-Hopf method is used in the course of solution. 

The three-dimensional distribution of the electric field in a MHD channel 
has been studied, because of considerable difficulties of mathematical nature 
encountered, only for the simplest cases of isotropically conducting media, i. e. 
for the cases when the walls have uniform conducting properties, or when an 
electrode zone is present in the channel [l- 71. For the anisotropic conductiv- 
ity of the medium only plane problems have been studied [8, 91. 

1. The cana of gemi-infinite electroden. 1’. Let us consider a flow 
of a viscous. incompressible, anisotropically conducting medium in a MHD channel ofrec- 
tangular cross section 1 z 1 < co, ( y 1 < 0, 1 z ; < I, in an external homogeneous mag- 
netic field Ho (0, Ho, 0), Ho = con&. For y = z!z b, the channel walls are insu- 
lators, while the other two walls (z = + 1) are insulators for x < 0 and perfectly 
conducting electrodes for 5 > 0. The velocity of the medium is 


